Image: Second state of the second s

<u>Roland Groz</u>, Nicolas Bremond, Catherine Oriat, U. Grenoble Alpes, France

Adenilso Simao, U. São Paulo, Brasil

Global context: inferring models thru testing

- Model-based testing is good (systematic)
 But often NO model available
- Goal: keep benefits of MBT when no model

Method: Testing a system is LEARNING the behaviour of a system

➔ Use "ML" techniques to learn model

<u>Problem:</u> learn correct & "complete" behaviour of Black Box systems

Motivational example

- Reverse-engineer models of Web applications to detect security vulnerabilities using Learning algos (e.g. L*)
- E-Health app provided by Siemens as a Virtual Machine

Learner

- single I/O RTT over LAN: < 1 ms
- reset=reboot VM: ~1 minute
- Timewise: reset is O(10⁵) RTT in example
- Many systems CANNOT be reset AT ALL.

Key difficulties when no reset

- How can we know in which state seq is applied ?
- No backtrack possible to check other sequence
- Losing track: we no longer know from where we apply an input

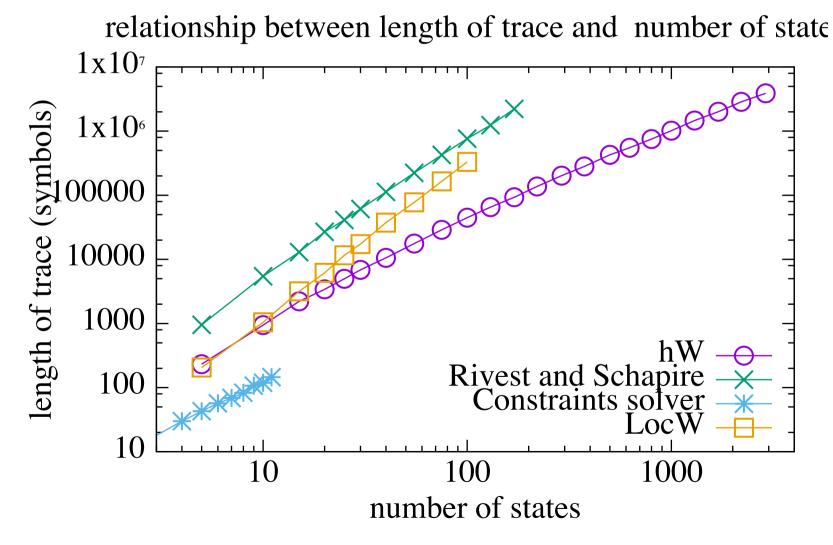
Existing algorithms without reset

Rivest & Schapire 1993

- □ *Homing sequence*: ersatz for resetting in one of several states
- □ Then use a copy of L* for each homed state
- LocW (Groz & al. 2015)
 - □ Assume W-set known (identifying sequences)
 - Localize in an identifiable state with nested W
- Constraint-solving (Petrenko & al. 2017)
 - □ Assume bound n on #states.

NEW (this paper): hW inference
 No assumption ! Discovers h(oming) and W (characterizing)

Results on random machines (log-log)



Homing seq and W-sets

h=a is homing sequence: After a/0 or a/1, final state=2, (in this case h is a reset because single final state)
W={a,b} is a characterizing set
a/1, b/1 : characterize state 1
a/0, b/0 : characterize state 2
a/0, b/1 : characterize state 3

Note: single homing sequence, but most machines require |W|> 1

b/1

a/0

a/0

hW inference: core loop for h=a W={a, b}

Repeatedly apply h, an input and w_k to progressively learn transitions

 \Box More generally haxw_k, a transfer seq., x input

h/1.w₁/0 h/0. w₁/0 h/0. w₂/0

At this point we know that tail state of h/0 is state characterized by {a/0,b/0} (and we are now in state 1)

- h/1: we are again in tail state h/1, apply w₂
- b/0: now we know tail state h/1 is {a/0,b/0}

b/1

a/0

a/0

b/0

hW inference: cont'd h=a W={a, b}

 $b/1 \qquad b/1 \qquad a/0 \\ a/1 \qquad a/0 \\ b/0 \qquad b/0$

a/0 a/0

(a0,b0}

Known

□ h/0 -> {a/0,b/0} □ h/1 -> {a/0,b/0}

- (and we are in 1). Apply h: a/1. We are now in a known state {a/0,b/0}
- So we learn a transition from it:

 \Box a/0 so we know the output on a is 0

 \Box And tail state answers w₁/0.

hW inference: cont'd h=a W={a, b}

- Known
 - \square h/0 -> {a/0,b/0} ; h/1 -> {a/0,b/0} \square Partial transition
- We reapply h/0. So now we can complete knowledge of transition: a/0 b/0
- So we have completely learnt transition $\int a/0$
- Going on, we learn the full FSM

b/1

a/0

a/0

b/0

a/0

{a0,b0}

b/1

a/0

Learning with unknown h, W Key idea: use putative h, W

- Start with any (incorrect) h and W
 - □ E.g. empty sequence and set
 - Different states will be confused (merged)
 - □ So this will lead to apparent NonDeterminism (ND)
- ND: reapplying a transition x/0, we see x/1
 - □ Depending on context, we can either <u>extend</u> h to hx or W to W ∪ {x}
- Progressively <u>extending</u> h and W until they are homing & characterizing for the BB

Does it work ?

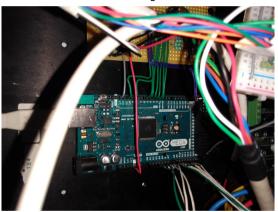
Yes !

□ Naive, but turns out to converge fast

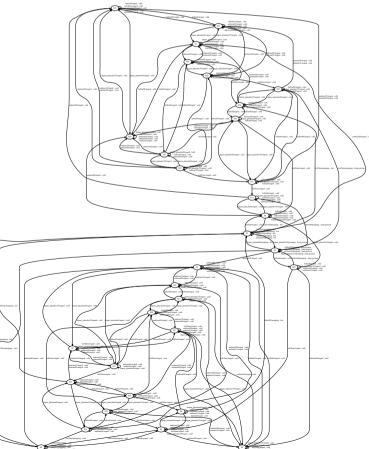
- Actually, enhanced with a number of heuristics not detailed here
- Outperforms previous algorithms
 - And even algorithms with reset, such as L*
- □ No initial knowledge needed (apart input set)
- Still needs an oracle to check equivalence in the end (or get counterexample to refine)
 - Oracle can just be random walk

Does it help with s/w testing ?

Example: a Heating Mngmt System



- C++ controller
- 3 temperature inputs + timer ->
 9 inputs
- Inferred 36 states, in a few minutes



Results on HMS controller

- RQ1: does hW yield usable models on real CPS ? Yes
- RQ2: testing efficiency / random testing
 54 mutations
 - 10 crashes without inputs (hW = RT)
 - 4 killed during inference also by RT but RT requires many more inputs to kill
 - 35 model inferred: exposes mutation
 - 5 equivalent models (w.r.t. input abstraction)

Conclusion

- New approach to learn FSM models of s/w components without reset
- Full black box, no assumption
- Works surprisingly well, scales up to 1000s states
- Also provides very systematic way of testing reactive software

Perspectives

- Potential breakthrough in Learning Based Testing
 - □ Resetting a system is a superfluous luxury
 - hW is fast, scaling, does not require any knowledge
- Check applicability on other types of s/w
- Extension to EFSM (data inference)

Thank you !

Following: backup slides

Inferring model of Black Box

Testing as a means of reverse-engineering a model of a BB

Classical active inference algorithms assume BB machine can be reset

□ Essential to merge traces (scenarios) on a common basis

- Assume an oracle can provide counterexamples (CE)
 - Essential to bring complexity down to polynomial in #states
 - Example: L* (Angluin). Complexity is
 O(#inputs CE_length #states²) = O(fmn²) queries (test seq.)
 - □ So O(fmn²) <u>resets</u>